Stress Relaxation and Creep

  • 0
  • December 17, 2019

An O-ring or a Seal under energized conditions must maintain good contact force throughout the functional life of the products. Contact force is generated between the mating surfaces when one of the mating surfaces deflects and compresses the seal surface. In order for the sealing to remain effective the contact surfaces must return to the undeformed original position when the contacting force is removed.  Under these conditions the deflection of the sealing element must be fully recoverable and so hyperelastic by nature.  If there is any unrecoverable strain in the material the performance of the seal is diminished and leak would occur from between the surfaces. The key to designing a good sealing element is that the good contact force is as high as possible while at the same time ensuring that the deflection remains hyperelastic in nature.

This requires the use of a material with a good combination of force at a desired deformation characteristic. The relationship between strain and stress is described by the material’s stress-strain curve. Figure 1 shows typical stress-strain curves from a polymer thermoplastic material and thermoset rubber material.  Both the materials have plastic strain properties where when the material is stretched beyond the elastic limit there is some permanent deformation and the material does not fully return to its original undeformed condition.

Figure 1: Stress-Strain Curves from Thermplastic and Thermoset Materials

The plastic strain, is the area between the loading and unloading line in both the graphs. In automotive application this permanent plastic strain is observed more easily in under the hood components located near the engine compartments because of the presence of high temperature conditions.  If a polymer part such as intake manifold is stressed to a certain and held for a period of time then some of the elastic strain converts to plastic strain resulting in observations of permanent deformation in the component. There are two physical mechanisms by which the amount of plastic strain increases over time, 1) Stress relaxation and 2) Creep. Creep is an increase in plastic strain under constant force, while in the case of Stress relaxation, it is a steady decrease in force under constant applied deformation or strain. Creep is a serious issue in plastic housings or snap fit components. In Most Finite Element Analysis softwares stress relaxation and creep can both be modeled with the help of experimental test data

Leave a Reply