Failure of Rubber Components under Fatigue

Failure of Rubber Components under Fatigue

  • 0
  • July 13, 2019

Rubber components under multiaxial cyclic loading conditions are often considered to have failed or degraded when there is a change is the stiffness of the component and it is no longer able to provide the performance it is designed for. Elastomeric polymer components are widely used in many industries like automotive, aerospace and biomedical applications due to their good vibration isolation and energy absorption characteristics. The type of loading normally encountered by these components in service is mutiaxial in nature. Fatigue failure is thus a major consideration in their design and availability of testing techniques to predict fatigue life under these complex conditions is a necessity.

In real world applications all materials and products are subjected to a wide variety of vibrating or oscillating forces. Fatigue testing consists of applying a cyclic load to a test specimen or the component to determine in-service performance during situations similar to real world working conditions.

Advanced Scientific and Engineering Services (AdvanSES) specializes in Fatigue Testing of Automotive Components including hoses, engine mounts, vibration isolators, silent bushes etc. Fatigue testing can be carried out in stress & force control, strain control or displacement control. The deformation modes under which fatigue tests are generally carried out are tension – tension, compression – compression, tension – compression and compression – tension.